1,595 research outputs found

    Aedes aegypti Saliva Alters Leukocyte Recruitment and Cytokine Signaling by Antigen-Presenting Cells during West Nile Virus Infection

    Get PDF
    West Nile virus (WNV) is transmitted during mosquito bloodfeeding. Consequently, the first vertebrate cells to contact WNV are cells in the skin, followed by those in the draining lymph node. Macrophages and dendritic cells are critical early responders in host defense against WNV infection, not just because of their role in orchestrating the immune response, but also because of their importance as sites of early peripheral viral replication. Antigen-presenting cell (APC) signals have a profound effect on host antiviral responses and disease severity. During transmission, WNV is intimately associated with mosquito saliva. Due to the ability of mosquito saliva to affect inflammation and immune responses, and the importance of understanding early events in WNV infection, we investigated whether mosquito saliva alters APC signaling during arbovirus infection, and if alterations in cell recruitment occur when WNV infection is initiated with mosquito saliva. Accordingly, experiments were performed with cultured dendritic cells and macrophages, flow cytometry was used to characterize infiltrating cell types in the skin and lymph nodes during early infection, and real-time RT-PCR was employed to evaluate virus and cytokine levels. Our in vitro results suggest that mosquito saliva significantly decreases the expression of interferon-β and inducible nitric oxide synthase in macrophages (by as much as 50 and 70%, respectively), whilst transiently enhancing interleukin-10 (IL-10) expression. In vivo results indicate that the predominate effect of mosquito feeding is to significantly reduce the recruitment of T cells, leading the inoculation site of mice exposed to WNV alone to have up to 2.8 fold more t cells as mice infected in the presence of mosquito saliva. These shifts in cell population are associated with significantly elevated IL-10 and WNV (up to 4.0 and 10 fold, respectively) in the skin and draining lymph nodes. These results suggest that mosquito saliva dysregulates APC antiviral signaling, and reveal a possible mechanism for the observed enhancement of WNV disease mediated by mosquito saliva via a reduction of T lymphocyte and antiviral activity at the inoculation site, an elevated abundance of susceptible cell types, and a concomitant increase in immunoregulatory activity of IL-10

    The Ursinus Weekly, May 22, 1961

    Get PDF
    Poli. sci prof enters politics; Wins race for GOP Burgess • Head cheerleaders named by U.C. Spirit Committee • Junior biology major crowned new Miss Montgomery County • Report says: Coeds feel WSGA coverage lacking • Officers presented, blazers awarded at WAA banquet • YWCA grants Holochuk, Kleinhoff two week camp scholarship funds • Sororities enjoy weekend at shore • Parents Day a reality; October 14 designated • Soph counselors chosen; Gladstone in command • Doctors Boswell, Tyson to retire; Served Ursinus over three decades • Editorial: Complaint dept; Parents Day • Ursinus in the past • Appraisal of the Lantern • Letters to the editor • Chapel commentary • Bear baseballers blow two games; Beat Moravian • Soundly tromped in last matches, racqueteers 3 & 5 • Cindermen sweep Valley, Mules; Finish season with even record • Spring election results reported before finalshttps://digitalcommons.ursinus.edu/weekly/1343/thumbnail.jp

    Scalable background-limited polarization-sensitive detectors for mm-wave applications

    Full text link
    We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.Comment: 7 pages, 3 figures, Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be published in Proceedings of SPIE Volume 915

    Silicon-Based Antenna-Coupled Polarization-Sensitive Millimeter-Wave Bolometer Arrays for Cosmic Microwave Background Instruments

    Full text link
    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of 90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope

    Sustainable Polymers: New 4-H STEM Curricula

    Get PDF
    There are many environmental issues surrounding the global production and use of plastics. Three science curricula (Grades K-2, 3-5, and 6-8) were developed to introduce youth to the past, present, and future of plastics. Designed using research-based methods and grounded in effective science pedagogy, the curricula provide young people opportunities to explore viable alternatives to plastics and develop knowledge and skills necessary to help mitigate environmental impacts associated with the production, use and disposal of plastics. Evaluation results demonstrated that youth improved their understanding of polymers and intention to help reduce impacts of plastics on the environment

    The C-Band All-Sky Survey: Instrument design, status, and first-look data

    Get PDF
    The C-Band All-Sky Survey (C-BASS) aims to produce sensitive, all-sky maps of diffuse Galactic emission at 5 GHz in total intensity and linear polarization. These maps will be used (with other surveys) to separate the several astrophysical components contributing to microwave emission, and in particular will allow an accurate map of synchrotron emission to be produced for the subtraction of foregrounds from measurements of the polarized Cosmic Microwave Background. We describe the design of the analog instrument, the optics of our 6.1 m dish at the Owens Valley Radio Observatory, the status of observations, and first-look data.Comment: 10 pages, 11 figures, published in Proceedings of SPIE MIllimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2010), Vol. 7741, 77411I-1 - 77411I-1

    Fabrication of Silicon Backshorts with Improved Out-of-Band Rejection for Waveguide-Coupled Superconducting Detectors

    Get PDF
    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microqave background to search for gravitational waves form a posited epoch of inflation early in the universe's history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with good conrol of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we will present work on the fabrication of silicon quarter-wave backshorts for the CLASS 40GHz focal plane. The 40GHz backshort consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through wafer vins to provide a 2.0mm long square waveguide. The third wafer acts as the backshort cap. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detectors with silicon quarter wave backshorts and present current measurement results

    The context influences doctors' support of shared decision-making in cancer care

    Get PDF
    Most cancer patients in westernised countries now want all information about their situation, good or bad, and many wish to be involved in decision-making. The attitudes to and use of shared decision-making (SDM) by cancer doctors is not well known. Australian cancer clinicians treating breast, colorectal, gynaecological, haematological, or urological cancer were surveyed to identify their usual approach to decision-making and their comfort with different decision-making styles when discussing treatment with patients. A response rate of 59% resulted in 624 complete surveys, which explored usual practice in discussing participation in decision-making, providing information, and perception of the role patients want to play. Univariate and multivariate analyses were performed to identify predictors of use of SDM. Most cancer doctors (62.4%) reported using SDM and being most comfortable with this approach. Differences were apparent between reported high comfort with SDM and less frequent usual practice. Multivariate analysis showed that specialisation in breast or urological cancers compared to other cancers (AOR 3.02), high caseload of new patients per month (AOR 2.81) and female gender (AOR 1.87) were each independently associated with increased likelihood of use of SDM. Barriers exist to the application of SDM by doctors according to clinical situation and clinician characteristics

    Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    Get PDF
    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe s history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04 mm long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies
    corecore